Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Microbiol Immunol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38444370

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global public health crisis. The causative agent, the SARS-CoV-2 virus, enters host cells via molecular interactions between the viral spike protein and the host cell ACE2 surface protein. The SARS-CoV-2 spike protein is extensively decorated with up to 66 N-linked glycans. Glycosylation of viral proteins is known to function in immune evasion strategies but may also function in the molecular events of viral entry into host cells. Here, we show that N-glycosylation at Asn331 and Asn343 of SARS-CoV-2 spike protein is required for it to bind to ACE2 and for the entry of pseudovirus harboring the SARS-CoV-2 spike protein into cells. Interestingly, high-content glycan binding screening data have shown that N-glycosylation of Asn331 and Asn343 of the RBD is important for binding to the specific glycan molecule G4GN (Galß-1,4 GlcNAc), which is critical for spike-RBD-ACE2 binding. Furthermore, IL-6 was identified through antibody array analysis of conditioned media of the corresponding pseudovirus assay. Mutation of N-glycosylation of Asn331 and Asn343 sites of the spike receptor-binding domain (RBD) significantly reduced the transcriptional upregulation of pro-inflammatory signaling molecule IL-6. In addition, IL-6 levels correlated with spike protein levels in COVID-19 patients' serum. These findings establish the importance of RBD glycosylation in SARS-CoV-2 pathogenesis, which can be exploited for the development of novel therapeutics for COVID-19.

2.
J Biol Chem ; 300(1): 105583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141770

RESUMO

Membrane polyphosphoinositides (PPIs) are lipid-signaling molecules that undergo metabolic turnover and influence a diverse range of cellular functions. PPIs regulate the activity and/or spatial localization of a number of actin-binding proteins (ABPs) through direct interactions; however, it is much less clear whether ABPs could also be an integral part in regulating PPI signaling. In this study, we show that ABP profilin1 (Pfn1) is an important molecular determinant of the cellular content of PI(4,5)P2 (the most abundant PPI in cells). In growth factor (EGF) stimulation setting, Pfn1 depletion does not impact PI(4,5)P2 hydrolysis but enhances plasma membrane (PM) enrichment of PPIs that are produced downstream of activated PI3-kinase, including PI(3,4,5)P3 and PI(3,4)P2, the latter consistent with increased PM recruitment of SH2-containing inositol 5' phosphatase (SHIP2) (a key enzyme for PI(3,4)P2 biosynthesis). Although Pfn1 binds to PPIs in vitro, our data suggest that Pfn1's affinity to PPIs and PM presence in actual cells, if at all, is negligible, suggesting that Pfn1 is unlikely to directly compete with SHIP2 for binding to PM PPIs. Additionally, we provide evidence for Pfn1's interaction with SHIP2 in cells and modulation of this interaction upon EGF stimulation, raising an alternative possibility of Pfn1 binding as a potential restrictive mechanism for PM recruitment of SHIP2. In conclusion, our findings challenge the dogma of Pfn1's binding to PM by PPI interaction, uncover a previously unrecognized role of Pfn1 in PI(4,5)P2 homeostasis and provide a new mechanistic avenue of how an ABP could potentially impact PI3K signaling byproducts in cells through lipid phosphatase control.


Assuntos
Fosfatidilinositóis , Profilinas , Fator de Crescimento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosfatidilinositóis/metabolismo , Humanos , Células HEK293 , Profilinas/metabolismo
3.
Heliyon ; 9(9): e19345, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662720

RESUMO

The SARS-CoV-2 virus has been identified as the infectious agent that led to the COVID-19 pandemic, which the world has seen very recently. Researchers have linked the SARS-CoV-2 outbreak to bats for the zoonotic spread of the virus to humans. Coronaviruses have a crown-like shape and positive-sense RNA nucleic acid. It attaches its spike glycoprotein to the host angiotensin-converting enzyme 2 (ACE2) receptor. Coronavirus genome comprises 14 ORFs and 27 proteins, spike glycoprotein being one of the most critical proteins for viral pathogenesis. Many mammals and reptiles, including bats, pangolins, ferrets, snakes, and turtles, serve as the principal reservoirs for this virus. But many experimental investigations have shown that certain domestic animals, including pigs, chickens, dogs, cats, and others, may also be able to harbor this virus, whether they exhibit any symptoms. These animals act as reservoirs for SARS-CoV, facilitating its zoonotic cross-species transmission to other species, including humans. In this review, we performed a phylogenetic analysis with multiple sequence alignment and pairwise evolutionary distance analysis, which revealed the similarity of ACE2 receptors in humans, chimpanzees, domestic rabbits, house mice, and golden hamsters. Pairwise RMSD analysis of the spike protein from some commonly reported SARS-CoV revealed that bat and pangolin coronavirus shared the highest structural similarity with human coronavirus. In a further experiment, molecular docking confirmed a higher affinity of pig, bat, and pangolin coronavirus spike proteins' affinity to the human ACE2 receptor. Such comprehensive structural and genomic analysis can help us to forecast the next likely animal source of these coronaviruses that may infect humans. To combat these zoonotic illnesses, we need a one health strategy that considers the well-being of people and animals and the local ecosystem.

4.
Comput Biol Chem ; 106: 107933, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536229

RESUMO

This study aims to investigate the potential therapeutic application of Ixeridium dentatum (ID) in treating atopic dermatitis (AD) through network pharmacology, molecular docking, and molecular dynamic simulation. We employed GC-MS techniques and identified 40 bioactive compounds present in the ID and determined their targets by accessing public databases. The convergence of compounds and dermatitis related targets led to the identification of 32 common genes. Among them, IL1B, PTGS2, IL6, IL2, and RELA, were found to be significant targets which were analyzed using Cytoscape network topology. The KEGG pathway evaluation revealed that these targets were significantly enriched in the C-type lectin receptor signaling pathway. The therapeutic efficacy of Stigmasta-5,22-dien-3-ol, Urea, n-Heptyl-, and 3-Epimoretenol was demonstrated in molecular docking assay, as evidenced by their presence in the core compounds of the compound-target network. Furthermore, these compounds exhibited significant kinetic stability and chemical reactivity in DFT quantum analysis when compared to their co-crystallized ligands and reference drug, indicating their potential as key targets for future research. Among the top three docking complexes, namely IL6-3-Epimoretenol, and IL2- Stigmasta-5,22-dien-3-ol, both demonstrated exceptional dynamic characteristics in molecular dynamics simulations at 100 ns. The feasibility of these compounds could be attributed to the prior traditional interrelationship between ID and AD. Overall, this research elucidates the interplay between AD-associated signaling pathways and target receptors with the bioactive ID. The proposal posits the utilization of antecedent compounds as a substitute for the customary pharmaceutical intervention that obstructs the discharge of cytokines, which incite dermal inflammation in the C-type lectin receptor signaling pathway of atopic dermatitis.


Assuntos
Dermatite Atópica , Medicamentos de Ervas Chinesas , Humanos , Dermatite Atópica/tratamento farmacológico , Interleucina-2 , Interleucina-6 , Simulação de Acoplamento Molecular , Lectinas Tipo C
5.
Plant Physiol Biochem ; 201: 107852, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356385

RESUMO

In natural habitats, plants are exploited by pathogens in biotrophic or necrotrophic ways. Concurrently, plants have evolved their defense systems for rapid perception of pathogenic effectors and begin concerted cellular reprogramming pathways to confine the pathogens at the entry sites. During the reorganization of cellular signaling mechanisms following pathogen attack, non-coding RNAs serves an indispensable role either as a source of resistance or susceptibility. Besides the well-studied functions of non-coding RNAs related to plant development and abiotic stress responses, previous and recent discoveries have established that non-coding RNAs like miRNAs, siRNAs, lncRNAs and phasi-RNAs can fine tune plant defense responses by targeting various signaling pathways. In this review, recapitulation of previous reports associated with non-coding RNAs as a defense responder against virus, bacteria and fungus attacks and insightful discussion will lead us to conceive innovative ideas to fight against approaching threats of resistant breaking pathogens.


Assuntos
Fungos , Doenças das Plantas , Doenças das Plantas/microbiologia , RNA Interferente Pequeno/metabolismo , Estresse Fisiológico , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
J Nanobiotechnology ; 20(1): 393, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045375

RESUMO

High-quality point-of-care is critical for timely decision of disease diagnosis and healthcare management. In this regard, biosensors have revolutionized the field of rapid testing and screening, however, are confounded by several technical challenges including material cost, half-life, stability, site-specific targeting, analytes specificity, and detection sensitivity that affect the overall diagnostic potential and therapeutic profile. Despite their advances in point-of-care testing, very few classical biosensors have proven effective and commercially viable in situations of healthcare emergency including the recent COVID-19 pandemic. To overcome these challenges functionalized magnetic nanoparticles (MNPs) have emerged as key players in advancing the biomedical and healthcare sector with promising applications during the ongoing healthcare crises. This critical review focus on understanding recent developments in theranostic applications of functionalized magnetic nanoparticles (MNPs). Given the profound global economic and health burden, we discuss the therapeutic impact of functionalized MNPs in acute and chronic diseases like small RNA therapeutics, vascular diseases, neurological disorders, and cancer, as well as for COVID-19 testing. Lastly, we culminate with a futuristic perspective on the scope of this field and provide an insight into the emerging opportunities whose impact is anticipated to disrupt the healthcare industry.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Nanopartículas de Magnetita , Nanopartículas , COVID-19/diagnóstico , Teste para COVID-19 , Doença Crônica , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanomedicina , Pandemias
7.
Phys Rev E ; 105(6-1): 064213, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854563

RESUMO

Cardiac fibrillation is caused by self-sustaining spiral waves that occur in the myocardium, some of which can be pinned to anatomical obstacles, making them more difficult to eliminate. A small electrical stimulation is often sufficient to unpin these spirals but only if it is applied during the vulnerable unpinning window. Even if these unpinning windows can be inferred from data, when multiple pinned spirals exist, their unpinning windows will not generally overlap. Using phase-based reduction techniques, we formulate and solve an optimal control problem to yield a time-varying external voltage gradient that can synchronize a collection of spiral waves that are pinned to a collection of heterogeneous obstacles. Upon synchronization, the unpinning windows overlap so that they can be simultaneously unpinned by applying an external voltage gradient pulse at an appropriate moment. Numerical validation is presented in bidomain model simulations. Results represent a proof-of-concept illustration of the proposed unpinning strategy which explicitly incorporates heterogeneity in the problem formulation and requires no real-time feedback about the system state.

8.
Plant Cell Rep ; 41(10): 1931-1944, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35833989

RESUMO

DNA methylation is a dynamic epigenetic mechanism that plays a significant role in gene expression and also maintains chromatin stability. The process is conserved in both plants and animals, and crucial for development and stress responses. Differential DNA methylation during adverse environmental conditions or pathogen attack facilitates the selective expression of defense-related genes. Both stress-induced DNA hypomethylation and hypermethylation play beneficial roles in activating the defense response. These DNA marks may be carried to the next generation making the progenies 'primed' for abiotic and biotic stress responses. Over the recent years, rapid advancements in the area of high throughput sequencing have enabled the detection of methylation status at genome levels in several plant species. Epigenotyping offers an alternative tool to plant breeders in addition to conventional markers for the selection of the desired offspring. In this review, we briefly discuss the mechanism of DNA methylation, recent understanding of DNA methylation-mediated gene regulation during abiotic and biotic stress responses, and stress memory in plants.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Animais , Cromatina , Metilação de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas/genética , Plantas/genética , Estresse Fisiológico/genética
9.
J Genet Eng Biotechnol ; 20(1): 87, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708781

RESUMO

BACKGROUND: Lignocellulosic biomasses produced from agriculture and forest-based industries are the cheapest or negative-cost biomass with a great potential for biotransformation to value-added bioproducts. Paper mill sludge, an important lignocellulosic biomass creates an environmental threat, which requires financial input for disposal. Thus, this study was aimed to isolate a novel bacterial strain capable of degrading cellulosic biomass including paper mill sludge to produce reducing sugar and other value-added bioproducts. RESULTS: A novel bacterial strain Arthrobacter woluwensis TDS9 isolated from the soil was screened for its cellulolytic activity using carboxymethyl cellulose (CMC) as the sole carbon source. The incubation period, temperature, pH, carbon, and nitrogen sources are the most important factors ruling the CMCase and sugar productions of the strain A. woluwensis TDS9, and an alkaline pH (pH 8.0) led to enhanced sugar production up to 1100.09 µg/mL after 72 h of incubation at 25°C in a medium containing 1.5% CMC and 1.25% beef extract. The optimal conditions for maximum CMCase activity were defined, and the potassium ion boosted the CMCase activity up to 1.06 U/mL when the enzymatic reaction was performed for 30 min at 50°C and pH 8 using CMC as a substrate. Moreover, the strain A. woluwensis TDS9 produced 433.33 µg/mL reducing sugar from 1% pretreated paper mill sludge. Significant alterations in the structural arrangement of cellulosic fiber of paper mill sludge observed under microscope after each step of chemical treatment process helped for loosening the cellulose fibers and increased the saccharification for enzymatic hydrolysis. Endoglucanase IV (33 KDa) and beta-glucosidase II (53 KDa) were identified in crude enzyme based on the zymogram analysis and substrate specificity. CONCLUSIONS: The research has for the first time proved that this A. woluwensis TDS9 strain can efficiently convert cellulose. Therefore, the strain TDS9 could be a potential candidate for cellulase production in an industrial biotransformation process of paper mill sludge to produce reducing sugar. This sugar stream can be further used as a substrate to produce biofuels and other organic acids using another microorganism, which represents a greener alternative to add value to the paper production helping paper mill industries.

10.
Front Immunol ; 13: 837290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371007

RESUMO

SARS-CoV-2, a novel Corona virus strain, was first detected in Wuhan, China, in December 2019. As of December 16, 2021, almost 4,822,472 people had died and over 236,132,082 were infected with this lethal viral infection. It is believed that the human immune system is thought to play a critical role in the initial phase of infection when the viruses invade the host cells. Although some effective vaccines have already been on the market, researchers and many bio-pharmaceuticals are still working hard to develop a fully functional vaccine or more effective therapeutic agent against the COVID-19. Other efforts, in addition to functional vaccines, can help strengthen the immune system to defeat the corona virus infection. Herein, we have reviewed some of those proven measures, following which a more efficient immune system can be better prepared to fight viral infection. Among these, dietary supplements like- fresh vegetables and fruits offer a plentiful of vitamins and antioxidants, enabling to build of a healthy immune system. While the pharmacologically active components of medicinal plants directly aid in fighting against viral infection, supplementary supplements combined with a healthy diet will assist to regulate the immune system and will prevent viral infection. In addition, some personal habits, like- regular physical exercise, intermittent fasting, and adequate sleep, had also been proven to aid the immune system in becoming an efficient one. Maintaining each of these will strengthen the immune system, allowing innate immunity to become a more defensive and active antagonistic mechanism against corona-virus infection. However, because dietary treatments take longer to produce beneficial effects in adaptive maturation, personalized nutrition cannot be expected to have an immediate impact on the global outbreak.


Assuntos
COVID-19 , Suplementos Nutricionais , Humanos , Sistema Imunitário , SARS-CoV-2 , Vitaminas/uso terapêutico
11.
Life (Basel) ; 12(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35207564

RESUMO

Caesalpinia sappan L. (CS) is widely used to treat diabetic complications in south-east Asia, specifically in traditional Chinese medicine. This study intends to explain the molecular mechanism of how chemical constituents of CS interrelate with different signaling pathways and receptors involved in T2DM. GC-MS was employed to identify the chemical compounds from the methanol extract of CS wood (MECSW). Lipinski's rule of five was applied, and 33 bioactive constituents have been screened from the CS extract. After that, 124 common targets and 26 compounds associated with T2DM were identified by mining several public databases. Protein-protein interactions and compound-target network were constructed using the STRING database and Cytoscape tool. Protein-protein interactions were identified in 121 interconnected nodes active in T2DM and peroxisome proliferator-activated receptor gamma (PPARG) as key target receptors. Furthermore, pathway compound target (PCT) analysis using the merger algorithm plugin of Cytoscape revealed 121 nodes from common T2DM targets, 33 nodes from MECSW compounds and 9 nodes of the KEGG pathway. Moreover, network topology analysis determined "Fisetin tetramethyl ether" as the key chemical compound. The DAVID online tool determined seven signaling receptors, among which PPARG was found most significant in T2DM progression. Gene ontology and KEGG pathway analysis implied the involvement of nine pathways, and the peroxisome proliferator-activated receptor (PPAR) pathway was selected as the hub signaling pathway. Finally, molecular docking and quantum chemistry analysis confirmed the strong binding affinity and reactive chemical nature of fisetin tetramethyl ether with target receptors exceeding that of the conventional drug (metformin), PPARs agonist (rosiglitazone) and co-crystallized ligands, indicating that fisetin could be a potential drug of choice in T2DM management. This study depicts the interrelationship of the bioactive compounds of MECSW with the T2DM-associated signaling pathways and target receptors. It also proposes a more pharmaceutically effective substance, fisetin tetramethyl ether, over the standard drug that activates PPARG protein in the PPAR signaling pathway of T2DM.

12.
J Immunol Methods ; 503: 113244, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218866

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has become a worldwide pandemic, and there is a pressing need for the rapid development of novel therapeutic strategies. SARS-CoV-2 viral entry is mediated by interaction between the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein and host cellular receptor, human angiotensin converting enzyme 2 (ACE2). The lack of a high throughput screening (HTS) platform for candidate drug screening means that no targeted COVID-19 treatments have been developed to date. To overcome this limitation, we developed a novel, rapid, simple, and HTS binding assay platform to screen potential inhibitors of the RBD-ACE2 complex. Three "neutralizing" mouse monoclonal antibodies capable of blocking the RBD-ACE2 interaction were identified using our binding assay and pseudovirus neutralization assay followed by further validation with the Focus Reduction Neutralization Test (FRNT), which analyzes the neutralization capacity of samples in the presence of live SARS-CoV-2. Furthermore, the consistency of our binding assay and FRNT results (R2 = 0.68) was demonstrated by patients' serum, of which were COVID-19 positive (n = 34) and COVID-19 negative (n = 76). Several small molecules selected for their potential to inhibit the Spike-ACE2 complex in silico were also confirmed with the binding assay. In addition, we have evaluated vaccine efficacy using binding assay platform and validated through pseudovirus neutralization assay. The correlation between binding assay & psuedovirus assay of the post vaccinated serum showed well correlated (R2 = 0.09) Moreover, our binding assay platform successfully validated different Spike RBD mutants. These results indicate that our binding assay can be used as a platform for in vitro screening of small molecules and monoclonal antibodies, and high-throughput assessment of antibody levels after vaccination. When conducting drug screening, computer virtual screening lacks actual basis, construction of pseudoviruses is relatively complicated, and even FRNT requires a P3 laboratory. There are few methods to determine the competitiveness of the target drug and SRBD or ACE2. Our binding assay can fill this gap and accelerate the process and efficiency of COVID-19 drug screening.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Camundongos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
13.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056661

RESUMO

Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.


Assuntos
Doenças Ósseas/patologia , Inibidores Enzimáticos/farmacologia , Doenças do Sistema Imunitário/patologia , Nefropatias/patologia , Malária/patologia , Quinases Relacionadas a NIMA/antagonistas & inibidores , Neoplasias/patologia , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/enzimologia , Resistência a Medicamentos , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/enzimologia , Nefropatias/tratamento farmacológico , Nefropatias/enzimologia , Malária/tratamento farmacológico , Malária/enzimologia , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
14.
Bioorg Chem ; 117: 105463, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34753058

RESUMO

Human cathepsin B is a cysteine-dependent protease whose roles in both normal and diseased cellular states remain yet to be fully delineated. This is primarily due to overlapping substrate specificities and lack of unambiguously annotated physiological functions. In this work, a selective, cell-permeable, clickable and tagless small molecule cathepsin B probe, KDA-1, is developed and kinetically characterized. KDA-1 selectively targets active site Cys25 residue of cathepsin B for labeling and can detect active cellular cathepsin B in proteomes derived from live human MDA-MB-231 breast cancer cells and HEK293 cells. It is anticipated that KDA-1 probe will find suitable applications in functional proteomics involving human cathepsin B enzyme.


Assuntos
Catepsina B/química , Sondas Moleculares/química , Catepsina B/genética , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Sondas Moleculares/síntese química , Estrutura Molecular , Relação Estrutura-Atividade
15.
Bioengineered ; 12(2): 11675-11698, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756133

RESUMO

Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer's disease, Parkinson's disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.


Assuntos
Bioengenharia , Doenças do Sistema Nervoso/genética , RNA não Traduzido/metabolismo , Animais , Tecnologia Biomédica , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , MicroRNAs/genética , RNA não Traduzido/genética , RNA não Traduzido/uso terapêutico
16.
R Soc Open Sci ; 8(10): 211003, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34659780

RESUMO

Oil pollution is of increasing concern for environmental safety and the use of microbial surfactants in oil remediation has become inevitable for their efficacy and ecofriendly nature. In this work, biosurfactants of bacteria isolated from oil-contaminated soil have been characterized. Four potent biosurfactant-producing strains (SD4, SD11, SD12 and SD13) were selected from 27 isolates based on drop collapse assay and emulsification index, and identified as species belonging to Bacillus, Burkholderia, Providencia and Klebsiella, revealed from their 16S rRNA gene-based analysis. Detailed morphological and biochemical characteristics of each selected isolate were determined. Their growth conditions for maximum biosurfactant production were optimized and found quite similar among the four isolates with a pH of 3.0 and temperature 37°C after 6 or 7 days of growth on kerosene. The biosurfactants of SD4, SD11 and SD12 appeared to be glycolipids and that of SD13 a lipopeptide. Emulsification activity of most of the biosurfactants was stable at low and high temperatures (4-100°C), a wide range of pH (2-10) and salt concentrations (2-7% NaCl). Each biosurfactant showed antimicrobial activity against two or more pathogenic bacteria. The biosurfactants were well-capable of emulsifying kerosene, diesel and soya bean, and could efficiently degrade diesel.

17.
Curr Issues Mol Biol ; 43(2): 434-456, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206443

RESUMO

Molineria capitulata is an ornamental plant that has traditionally been used to treat several chronic diseases. The present study was designed to examine the antioxidant, cytotoxic, thrombolytic, anti-inflammatory, and analgesic activities of a methanolic extract of M. capitulata leaves (MEMC) using both experimental and computational models. Previously established protocols were used to perform qualitative and quantitative phytochemical screening in MEMC. A computational study, including molecular docking and ADME/T analyses, was performed. The quantitative phytochemical analysis revealed the total phenolic and flavonoid contents as 148.67 and 24 mg/g, respectively. Antioxidant activity was assessed by examining the reducing power of MEMC, resulting in absorbance of 1.87 at 400 µg/mL, demonstrating a strong reduction capacity. The extract exhibited significant protection against blood clotting and showed the highest protein denaturation inhibition at 500 µg/mL. In both the acetic acid-induced writhing and formalin-induced paw-licking models, MEMC resulted in significant potential pain inhibition in mice. In the computational analysis, 4-hydroxybenzaldehyde, orcinol glucoside, curcapital, crassifogenin C, and 2,6-dimethoxy-benzoic acid displayed a strong predictive binding affinity against the respective receptors. These findings indicated that M. capitulata possesses significant pharmacological activities to an extent supported by computational studies.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Hypoxidaceae/química , Animais , Antioxidantes/isolamento & purificação , Relação Dose-Resposta a Droga , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade
18.
Phys Rev E ; 103(5-1): 052203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134261

RESUMO

Phase-isostable reduction is an emerging model reduction strategy that can be used to accurately replicate nonlinear behaviors in systems for which standard phase reduction techniques fail. In this work, we derive relationships between the cycle-to-cycle variance of the reduced isostable coordinates for systems subject to both additive white noise and periodic stimulation. Using this information, we propose a data-driven technique for inferring nonlinear terms of the phase-isostable coordinate reduction framework. We apply the proposed model inference strategy to the biologically motivated problem of eliminating cardiac alternans, an arrhythmia that is widely considered to be a precursor to more deadly cardiac arrhythmias. Using this strategy, by simply measuring a series of action potential durations in response to periodic stimulation, we are able to identify energy-optimal, nonfeedback control inputs to stabilize a period-1, alternans-free solution.

19.
Front Cell Dev Biol ; 8: 595849, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381504

RESUMO

Phosphoinositides, which are membrane-bound phospholipids, are critical signaling molecules located at the interface between the extracellular matrix, cell membrane, and cytoskeleton. Phosphoinositides are essential regulators of many biological and cellular processes, including but not limited to cell migration, proliferation, survival, and differentiation, as well as cytoskeletal rearrangements and actin dynamics. Over the years, a multitude of studies have uniquely implicated phosphoinositide signaling as being crucial in cardiovascular biology and a dominant force in the development of cardiovascular disease and its progression. Independently, the cellular transduction of mechanical forces or mechanotransduction in cardiovascular cells is widely accepted to be critical to their homeostasis and can drive aberrant cellular phenotypes and resultant cardiovascular disease. Given the versatility and diversity of phosphoinositide signaling in the cardiovascular system and the dominant regulation of cardiovascular cell functions by mechanotransduction, the molecular mechanistic overlap and extent to which these two major signaling modalities converge in cardiovascular cells remain unclear. In this review, we discuss and synthesize recent findings that rightfully connect phosphoinositide signaling to cellular mechanotransduction in the context of cardiovascular biology and disease, and we specifically focus on phosphatidylinositol-4,5-phosphate, phosphatidylinositol-4-phosphate 5-kinase, phosphatidylinositol-3,4,5-phosphate, and phosphatidylinositol 3-kinase. Throughout the review, we discuss how specific phosphoinositide subspecies have been shown to mediate biomechanically sensitive cytoskeletal remodeling in cardiovascular cells. Additionally, we discuss the direct interaction of phosphoinositides with mechanically sensitive membrane-bound ion channels in response to mechanical stimuli. Furthermore, we explore the role of phosphoinositide subspecies in association with critical downstream effectors of mechanical signaling in cardiovascular biology and disease.

20.
Anticancer Res ; 37(4): 1655-1663, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28373426

RESUMO

BACKGROUND/AIM: One of the major hurdles in the treatment of breast cancers is the inability of anti-cancer drugs to eliminate the breast cancer stem cells (BCSCs) population, which leads to disease relapse. The dearth in anti-cancer drugs that target BCSCs can be attributed to the absence of in vitro screening models that can not only recapitulate the tumor microenvironment consisting of BCSCs but also preserve the 3-dimensional (3D) architecture of in vivo tumors. MATERIALS AND METHODS: In our present study, we have developed a 3D cell culture system that shows: (i) enrichment of BCSCs, (ii) increased drug resistance, and (iii) generation of hypoxic conditions similar to tumors. RESULTS: Using this model, we were able to screen a FDA-approved diversity set and identify as well as validate actinomycin D as a potential anti-breast cancer agent. Interestingly, we show that actinomycin D specifically targets and down-regulates the expression of the stem cell transcription factor, Sox-2. Additionally, down-regulation of Sox-2 leads to depletion of the stem-cell population resulting in the inability of breast cancer cells to initiate tumor progression. CONCLUSION: This study demonstrates the utility of an in vivo-like 3D cell culture system for the identification and validation of anti-cancer agents that will have a better probability of success in the clinic.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Dactinomicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...